Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(6): eadi9284, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324683

RESUMO

Gasdermin D (GSDMD) serves as a vital mediator of inflammasome-driven pyroptosis. In our study, we have identified NU6300 as a specific GSDMD inhibitor that covalently interacts with cysteine-191 of GSDMD, effectively blocking its cleavage while not affecting earlier steps such as ASC oligomerization and caspase-1 processing in AIM2- and NLRC4-mediated inflammation. On the contrary, NU6300 robustly inhibits these earlier steps in NLRP3 inflammasome, confirming a unique feedback inhibition effect in the NLRP3-GSDMD pathway upon GSDMD targeting. Our study reveals a previously undefined mechanism of GSDMD inhibitors: NU6300 impairs the palmitoylation of both full-length and N-terminal GSDMD, impeding the membrane localization and oligomerization of N-terminal GSDMD. In vivo studies further demonstrate the efficacy of NU6300 in ameliorating dextran sodium sulfate-induced colitis and improving survival in lipopolysaccharide-induced sepsis. Overall, these findings highlight the potential of NU6300 as a promising lead compound for the treatment of inflammatory diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inflamassomos/metabolismo , Cisteína/metabolismo , Gasderminas , Lipoilação
2.
J Med Chem ; 67(1): 165-179, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38117948

RESUMO

Cytoplasmic vacuolation-associated cell death, known as methuosis, offers a promising nonapoptotic approach for cancer treatment. In this study, we outline the synthesis and evaluation of potent methuosis-inducing compounds. These compounds selectively induce cell death, characterized by extensive cytoplasmic vacuolation in HeLa and MDA-MB-231 cells. Notably, compound L22 exhibited a remarkable interaction with PIKfyve kinase, boasting a Kd value of 0.47 nM, surpassing the positive controls D-13 and MOMIPP in potency. Furthermore, it is important to highlight that cell death induced by compound L22 is unequivocally attributed to methuosis as it differs from apoptosis, necrosis, or autophagy. Importantly, when administered orally, L22 effectively inhibited tumor growth in a HeLa xenograft model without any apparent signs of toxicity. These results underscore the potential of L22 as a valuable tool for in-depth investigations into the mechanisms of methuosis and as a promising lead compound to guide structural optimization.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular , Apoptose , Fosfatos de Fosfatidilinositol/farmacologia
3.
J Agric Food Chem ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37931326

RESUMO

Onions are versatile and nutritious food widely used in various cuisines around the world. In our ongoing pursuit of bioactive substances with health benefits from red onion (Allium cepa L.) skin, a comprehensive chemical investigation was undertaken. Consequently, a total of 44 compounds, including three previously unidentified chalcones (1-3) were extracted from red onion skin. Of these isolates, chalcones 1-4 showed high affinity to A2A adenosine receptor (A2AAR), and chalcone 2 displayed the best binding affinity to A2AAR, with the IC50 value of 33.5 nM, good A2AAR selectivity against A1AR, A2BAR, and A3AR, and high potency in the cAMP functional assay (IC50 of 913.9 nM). Importantly, the IL-2 bioassay and the cell-mediated cytotoxicity assay demonstrated that chalcone 2 could boost T-cell activation. Furthermore, the binding mechanism of chalcone 2 with hA2AAR was elucidated by molecular docking. This work highlighted that the active chalcones in red onion might have the potential to be developed as A2AAR antagonists used in cancer immunotherapy.

4.
PLoS Pathog ; 19(11): e1011804, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38033141

RESUMO

The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and profound immune-escape capacity makes it an urgent need to develop broad-spectrum therapeutics. Nanobodies have recently attracted extensive attentions due to their excellent biochemical and binding properties. Here, we report two high-affinity nanobodies (Nb-015 and Nb-021) that target non-overlapping epitopes in SARS-CoV-2 S-RBD. Both nanobodies could efficiently neutralize diverse viruses of SARS-CoV-2. The neutralizing mechanisms for the two nanobodies are further delineated by high-resolution nanobody/S-RBD complex structures. In addition, an Fc-based tetravalent nanobody format is constructed by combining Nb-015 and Nb-021. The resultant nanobody conjugate, designated as Nb-X2-Fc, exhibits significantly enhanced breadth and potency against all-tested SARS-CoV-2 variants, including Omicron sub-lineages. These data demonstrate that Nb-X2-Fc could serve as an effective drug candidate for the treatment of SARS-CoV-2 infection, deserving further in-vivo evaluations in the future.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2 , Anticorpos de Domínio Único/farmacologia , Epitopos , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais
5.
J Med Chem ; 66(21): 14447-14473, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37879043

RESUMO

NLRP3 inflammasome is a multiprotein complex involved in host immune response─which exerts various biological effects by mediating the maturation and secretion of IL-1ß and IL-18─and pyroptosis. However, its aberrant activation could cause amplification of inflammatory effects, thereby triggering a range of ailments, including Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, gout, type 2 diabetes mellitus, and cancer. For the past few years, as an attractive anti-inflammatory target, NLRP3-targeting small-molecule inhibitors have been widely reported by both the academic and the industrial communities. In order to deeply understand the advancement of NLRP3 inflammasome inhibitors, we provide comprehensive insights and commentary on drugs currently under clinical investigation, as well as other NLRP3 inflammasome inhibitors from a chemical structure point of view, with an aim to provide new insights for the further development of clinical drugs for NLRP3 inflammasome-mediated diseases.


Assuntos
Artrite Reumatoide , Diabetes Mellitus Tipo 2 , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-1beta , Piroptose
6.
J Med Chem ; 66(19): 13428-13451, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756547

RESUMO

NLRP3 is an intracellular sensor protein that causes inflammasome formation and pyroptosis in response to a wide range of stimuli. Aberrant activation of NLRP3 inflammasome has been implicated in various chronic inflammatory diseases, making it a promising target for therapeutic intervention. In this work, a series of novel triazinone inhibitors of NLRP3 inflammasome were designed and synthesized. Compound L38 was identified for its excellent activity and acceptable metabolic stability among 41 compounds. Additionally, mechanism studies indicated that L38 inhibited NLRP3 inflammasome activation and pyroptosis by suppressing gasdermin D cleavage, ASC oligomerization, and NLRP3 inflammasome assembly while leaving mitochondrial ROS production, lysosome damage, and chloride/potassium efflux unaffected. Further investigation revealed that L38 could bind to the NACHT domain to exert inflammatory properties. Importantly, L38 exhibited positive therapeutic effects in DSS-induced ulcerative colitis mouse model. Taken together, this study presents a promising inhibitor of NLRP3 inflammasome deserving further investigation.


Assuntos
Colite Ulcerativa , Inflamassomos , Camundongos , Animais , Inflamassomos/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Camundongos Endogâmicos C57BL
7.
J Med Chem ; 66(16): 11365-11389, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37582195

RESUMO

Sepsis-associated acute kidney injury (AKI) is a serious clinical problem, without effective drugs. Abnormal activation of the purinergic P2X7 receptor (P2X7R) in septic kidneys makes its antagonist a promising therapeutic approach. Herein, a series of novel P2X7R antagonists were designed, synthesized, and structurally optimized. Based on in vitro potency in human/mouse P2X7R using HEK293 cells, hepatic microsomal stability, and pharmacokinetic and preliminary in vivo assessments, compound 14a was identified by respective human and mouse P2X7R IC50 values of 64.7 and 10.1 nM, together with favorable pharmacokinetic properties. Importantly, 14a dose-dependently alleviated kidney dysfunction and pathological injury in both lipopolysaccharide (LPS)- and cecal ligation/perforation (CLP)-induced septic AKI mice with a good safety profile. Mechanistically, 14a could suppress NLRP3 inflammasome activation to inhibit the expression of cleaved caspase-1, gasdermin D, IL-1ß, and IL-18 in the injured kidneys of septic mice. Collectively, these results highlighted that P2X7R antagonist 14a exerted a therapeutic potential against septic AKI.


Assuntos
Injúria Renal Aguda , Sepse , Animais , Humanos , Camundongos , Injúria Renal Aguda/tratamento farmacológico , Caspase 1/metabolismo , Células HEK293 , Inflamassomos/metabolismo , Rim/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7 , Sepse/tratamento farmacológico
8.
Eur J Med Chem ; 256: 115469, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37178481

RESUMO

Salt-inducible kinases (SIKs) play a crucial role in inflammation process, acting as molecular switches that regulate the transformation of M1/M2 macrophages. HG-9-91-01 is a SIKs inhibitor with potent inhibitory activity against SIKs in the nanomolar range. However, its poor drug-like properties, including a rapid elimination rate, low in vivo exposure and high plasma protein binding rate, have hindered further research and clinical application. To improve the drug-like properties of HG-9-91-01, a series of pyrimidine-5-carboxamide derivatives were designed and synthesized through a molecular hybridization strategy. The most promising compound 8h was obtained with favorable activity and selectivity on SIK1/2, excellent metabolic stability in human liver microsome, enhanced in vivo exposure and suitable plasma protein binding rate. Mechanism research showed that compound 8h significantly up-regulated the expression of anti-inflammatory cytokine IL-10 and reduced the expression of pro-inflammatory cytokine IL-12 in bone marrow-derived macrophages. Furthermore, it significantly elevated expression of cAMP response element-binding protein (CREB) target genes IL-10, c-FOS and Nurr77. Compound 8h also induced the translocation of CREB-regulated transcriptional coactivator 3 (CRTC3) and elevated the expression of LIGHT, SPHK1 and Arginase 1. Additionally, compound 8h demonstrated excellent anti-inflammatory effects in a DSS-induced colitis model. Generally, this research indicated that compound 8h has the potential to be developed as an anti-inflammatory drug candidate.


Assuntos
Doenças Inflamatórias Intestinais , Interleucina-10 , Humanos , Citocinas/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Pirimidinas/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-37086507

RESUMO

Flonoltinib Maleate (FM) is a novel selective inhibitor of Janus kinase 2/FMS-like tyrosine kinase 3 (JAK2/FLT3). In this study, we developed an ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to measure the plasma concentrations of FM in rats and dogs for pharmacokinetic studies. For chromatographic separation, we used a BEH C18 column (2.1 × 50 mm, 1.7 µm particle size) in HPLC. The mobile phase A consisted of a water solution containing 0.1% formic acid (FA) and 2 mM NH4OAc, mixed with acetonitrile (ACN) (V:V = 95:5). The mobile phase B was a water solution containing 0.1% FA and 2 mM NH4OAc, mixed with ACN (V:V = 5:95), which was used for gradient elution. We used multiple reactive ion detection (MRM) mode and electrospray ionization positive (ESI+) mode for quantitative analysis. The standard curve was linear in the concentration range of 0.5 to 500 ng/ml in rat and dog plasma. The intra-batch and inter-batch precision (RSD%) of FM in rat and dog plasma was less than 15%. The intra-batch and inter-batch accuracy was 88.3-106.5% and 92.0-100.6% in rats, and 94.7-106.6% and 95.3-103.8% in dogs, respectively. The RSD (%) of matrix factors (MF) normalized to the internal standard (IS) of FM in rat and dog plasma was ≤5.6% and ≤3.0%, respectively. The extraction recovery and carryover were considered acceptable. When the sample concentration was higher than the upper limit of quantitation (ULOQ), the 10-fold dilution was reliable within the limits of acceptability. The UPLC-MS/MS method developed in this study was successfully applied in measuring the pharmacokinetic parameters of FM in rats and dogs after intravenous and oral administration, laying a foundation for the preclinical pharmacokinetic study of FM and providing a reference for clinical pharmacokinetic studies.


Assuntos
Espectrometria de Massas em Tandem , Água , Ratos , Cães , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Administração Oral , Reprodutibilidade dos Testes
10.
Eur J Med Chem ; 251: 115234, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893624

RESUMO

P2X7R, which is a member of the purinergic P2 receptor family, is widely expressed in many immune cells, such as macrophages, lymphocytes, monocytes, and neutrophils. P2X7R is upregulated in response to proinflammatory stimulation, which is closely related to a variety of inflammatory diseases. The inhibition of P2X7 receptors has resulted in the elimination or reduction of symptoms in animal models of arthritis, depression, neuropathic pain, multiple sclerosis, and Alzheimer's disease. Therefore, the development of P2X7R antagonists is of great significance for the treatment of various inflammatory diseases. This review classifies the reported P2X7R antagonists according to their different cores, focuses on the structure-activity relationship (SAR) of the compounds, and analyzes some common substituents and strategies in the design of lead compounds, with the hope of providing valuable information for the development of new and efficient P2X7R antagonists.


Assuntos
Neuralgia , Animais , Relação Estrutura-Atividade , Macrófagos , Monócitos , Receptores Purinérgicos P2X7 , Antagonistas do Receptor Purinérgico P2X/farmacologia
11.
Phytomedicine ; 109: 154617, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610140

RESUMO

BACKGROUND: Searching the targets of natural products is very important for drug discovery and elucidating the mechanism of drug action and disease. Honokiol (HK), as the major active component of Magnolia officinalis Rehder & E.H.Wilson, has been widely used in medicine and cosmetics. Among its bioactivities, its anti-inflammatory activity is particularly impressive. However, the target protein of HK in anti-inflammatory action and its regulatory mechanism are unclear. PURPOSE: Here, we identified the target protein and molecular mechanism of the anti- inflammatory action of HK. METHODS: First, an LPS-induced septic shock model and DSS-induced ulcerative colitis model were used to assess the anti-inflammatory efficacy of HK. Second, the drug affinity responsive target stability, proteomics analysis, thermal shift assays and cellular thermal shift assays were used to identify and validate the target of HK. Finally, western blot, ELISA, LDH immunofluorescence staining, shRNA and LC/MS for L-leucine analysis were performed to determine the mechanism of the anti-inflammatory action of HK. RESULTS: This study revealed that HK significantly alleviated LPS-induced septic shock and DSS-induced ulcerative colitis in vivo, suggesting that HK has significant anti-inflammatory activity. HK treatment dramatically reduced IL-1ß release and caspase-1 activation at different time points, showing that HK could inhibit both NLRP3 inflammasome priming and activation processes in cells. HK also suppressed adaptor apoptosis speck-like protein oligomerization. Mechanistically, SLC3A2 was identified as a direct target of HK in THP-1 cells. HK downregulated SLC3A2 expression by promoting its degradation via proteasome-mediated proteolysis. Further study demonstrated that HK triggered SLC3A2 to suppress NLRP3 inflammasome activation by significantly reducing the content of L-leucine transported into cells and lysosomes to block the mTORC1 pathway. CONCLUSIONS: Our work identified HK as a promising anti-inflammatory drug candidate through the SLC3A2/L-leucine/mTORC1/NLRP3 pathways.


Assuntos
Colite Ulcerativa , Choque Séptico , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Lipopolissacarídeos , Leucina , Anti-Inflamatórios/farmacologia
13.
Phytochemistry ; 203: 113426, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36084856

RESUMO

Endophytic fungi are striking resources rich in bioactive structures with agrochemical significance. In order to maximize the opportunity of search for bioactive compounds, chemical epigenetic manipulation was introduced to enhance the structural diversity of the fungal products, and an UPLC-ESIMS and bioassay-guided separation was used to detect novel bioactive metabolites. Consequently, four previously undescribed compounds including two cyclopentenones (globosporins A and B) and two monoterpenoid indole alkaloids (globosporines C and D), as well as three known compounds, were isolated from the endophytic fungus Chaetomium globosporum of Euphorbia humifusa by exposure to a DNA methyltransferase inhibitor 5-azacytidine. Their structures including the absolute configurations were elucidated by the analysis of NMR spectroscopic data, HRESIMS, and TD-DFT-ECD calculations. The indole alkaloids (globosporines C and D) showed antimicrobial activities against three phytopathogenic microbes (Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, and Pseudomonas syringae pv. lachrymans) with MICs in the range of 14-72 µg/mL. Mostly, globosporine D was proved to be potently anti-phytopathogenic against X. oryzae pv. oryzae in vitro and in vivo, which suggested that it has the potential to be developed as a candidate for the prevention of rice bacterial leaf blight. This work provides an efficient and environmentally friendly approach for expanding fungal products with agricultural importance.


Assuntos
Anti-Infecciosos , Chaetomium , Euphorbia , Oryza , Alcaloides de Triptamina e Secologanina , Agroquímicos/metabolismo , Anti-Infecciosos/farmacologia , Azacitidina/metabolismo , Chaetomium/metabolismo , DNA/metabolismo , Epigênese Genética , Euphorbia/metabolismo , Alcaloides Indólicos/química , Metiltransferases/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Alcaloides de Triptamina e Secologanina/metabolismo
16.
J Med Chem ; 65(13): 9159-9173, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35762925

RESUMO

Here, we report a novel mechanism to selectively degrade target proteins. 3-(3-Phenoxybenzyl)amino-ß-carboline (PAC), a tubulin inhibitor, promotes selective degradation of αß-tubulin heterodimers. Biochemical studies have revealed that PAC specifically denatures tubulin, making it prone to aggregation that predisposes it to ubiquitinylation and then degradation. The degradation is mediated by a single hydrogen bond formed between the pyridine nitrogen of PAC and ßGlu198, which is identified as a low-barrier hydrogen bond (LBHB). In contrast, another two tubulin inhibitors that only form normal hydrogen bonds with ßGlu198 exhibit no degradation effect. Thus, the LBHB accounts for the degradation. We then screened for compounds capable of forming an LBHB with ßGlu198 and demonstrated that BML284, a Wnt signaling activator, also promotes tubulin heterodimer degradation through the LBHB. Our study provided a unique example of LBHB function and identified a novel approach to obtain tubulin degraders.


Assuntos
Ligação de Hidrogênio , Moduladores de Tubulina/química , Tubulina (Proteína)/química
17.
Phytomedicine ; 102: 154163, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35597027

RESUMO

BACKGROUND: Artemisia anomala S. Moore (Compositae), known as "Nan-Liu-Ji-Nu" in traditional Chinese medicine (TCM), has been used to treat many inflammatory diseases, including enteritis, acute icteric hepatitis, rheumatism, toothache, tonsillitis, and chronic bronchitis, for centuries. Our preliminary studies have demonstrated that the ethanolic extract of A. anomala (EAA) might be with the potential of inhibiting the activation of the NLRP3 inflammasome. However, the anti-inflammatory activity of EAA based on NLRP3 inflammasome inhibition is still unclear. PURPOSE: This work aimed to elucidate the anti-inflammatory mechanism of EAA by inhibiting NLRP3 inflammasome activation. METHODS: Lipopolysaccharide (LPS)-primed bone marrow-derived macrophages (BMDMs) were used to evaluate the inhibitory effects on NLRP3 inflammasome activation. The level of IL-1ß was determined by ELISA. The expression levels of IL-1ß, caspase-1, NLRP3, and ASC were assayed using western blot analysis. ASC oligomerization and speck formation were detected by immunofluorescence microscopy. The measurements of intracellular chloride and potassium were conducted using N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) probe assay and inductively coupled plasma-optical emission spectrometry (ICP-OES), respectively. Mitochondrial reactive oxygen species (mtROS) were examined using the MitoSOX method. Acridine orange (AO) staining was used to detect the permeability of the lysosomal membrane. A DSS-induced ulcerative colitis model was established to evaluate the anti-inflammatory effects of EAA in vivo. Finally, high-performance liquid chromatography (HPLC) was employed to identify and quantify the major constituents of EAA. RESULTS: In BMDMs, EAA significantly inhibited the release of IL-1ß induced by LPS. The mechanistic study revealed that EAA inhibited NLRP3 inflammasome activation by blocking the oligomerization of ASC and suppressed the LPS-induced priming step. Furthermore, EAA protected lysosomes by inhibiting the TAK1-JNK pathway, thereby inhibiting the assembly of downstream NLRP3 inflammasome and the production of IL-1ß. In addition, EAA exerted potent protective effects in an ulcerative colitis model by decreasing the content of colonic IL-1ß and alleviating the process of ulcerative colitis. HPLC analysis identified eight main components of EAA, including isofraxidin (1), quercetin-7-O-ß-D-glucopyranoside (2), apigenin-7-O-ß-D-glucopyranoside (3), 7-methoxycoumarin (4), quercetin (5), luteolin (6), kaempferol (7), and eupatorin (8), Of these compounds, quercetin and kaempferol were found to be the most potent ingredients. CONCLUSION: These findings collectively reveal that EAA exerts anti-inflammatory effects by both suppressing the NLRP3 priming step and protecting lysosomes to inhibit NLRP3 inflammasome activation, suggesting that this traditional herbal medicine might be used to treat NLRP3-driven inflammatory diseases.


Assuntos
Artemisia , Colite Ulcerativa , Anti-Inflamatórios/farmacologia , Caspase 1/metabolismo , Inflamassomos , Interleucina-1beta/metabolismo , Quempferóis , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/farmacologia , Quercetina
18.
ACS Med Chem Lett ; 13(4): 560-569, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450356

RESUMO

The NLRP3 inflammasome has now emerged as one of the most appealing drug targets for many inflammation-related diseases. Velutone F, a natural NLPR3 inhibitor, identified in our previous study has been limited in application by its low in planta abundance, weak activity, and complicated synthetic routes. To address these needs, structural optimization of velutone F led to a series of novel NLRP3 inhibitors. Among them, compound 14c exerted remarkable inhibitory activity with an IC50 value in the nanomolar range (251.1 nM) and was approximately 5-fold more potent than velutone F. Moreover, the synthesis method of 14c was simple, easy to handle, and scalable. Compound 14c could suppress NLRP3 inflammasome activation by attenuating ASC speck formation. Most importantly, compound 14c reduced peritoneal neutrophil influx in mice and IL-1ß in the spleen in the MSU-induced peritonitis in LPS-primed mouse model. Taken together, compound 14c is a prospective lead compound in the discovery of NLRP3 inflammasome inhibitors.

19.
Front Pharmacol ; 13: 811682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264952

RESUMO

Post-myocardial infarction heart failure (post-MI HF) is one of the leading global causes of death, and current prevention and treatment methods still cannot avoid the increasing incidence. Honokiol (HK) has previously been reported to improve myocardial ischemia/reperfusion injury and reverse myocardial hypertrophy by activating Sirt1 and Sirt3. We suspect that HK may also have a therapeutic effect on post-MI HF. In this study, we aimed to investigate the efficacy and mechanism of HK in the treatment of post-MI HF. We found that HK inhibited myocardial reactive oxygen species (ROS) production, reduced myocardial fibrosis, and improved cardiac function in mice after MI. HK also reduced the abnormality of mitochondrial membrane potential (MMP) and apoptosis of cardiomyocytes caused by peroxide in neonatal cardiomyocytes. RNAseq results revealed that HK restored the transcriptome changes to a certain extent and significantly enhanced the expression of mitochondrial inner membrane uncoupling protein isoform 3 (Ucp3), a protein that inhibits the production of mitochondrial ROS, protects cardiomyocytes, and relieves heart failure after myocardial infarction (MI). In cardiomyocytes with impaired Ucp3 expression, HK cannot protect against the damage caused by peroxide. More importantly, in Ucp3 knockout mice, HK did not change the increase in the ROS level and cardiac function damage after MI. Taken together, our results suggest that HK can increase the expression of the cardioprotective protein Ucp3 and maintain MMP, thereby inhibiting the production of ROS after MI and ameliorating heart failure.

20.
Blood Cancer J ; 12(3): 37, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256594

RESUMO

Janus kinase 2 (JAK2) hyperactivation by JAK2V617F mutation leads to myeloproliferative neoplasms (MPNs) and targeting JAK2 could serve as a promising therapeutic strategy for MPNs. Here, we report that Flonoltinib Maleate (FM), a selective JAK2/FLT3 inhibitor, shows high selectivity for JAK2 over the JAK family. Surface plasmon resonance assays verified that FM had a stronger affinity for the pseudokinase domain JH2 than JH1 of JAK2 and had an inhibitory effect on JAK2 JH2V617F. The cocrystal structure confirmed that FM could stably bind to JAK2 JH2, and FM suppressed endogenous colony formation of primary erythroid progenitor cells from patients with MPNs. In several JAK2V617F-induced MPN murine models, FM could dose-dependently reduce hepatosplenomegaly and prolong survival. Similar results were observed in JAK2V617F bone marrow transplantation mice. FM exhibited strong inhibitory effects on fibrosis of the spleen and bone marrow. Long-term FM treatment showed good pharmacokinetic/pharmacodynamic characteristics with high drug exposure in tumor-bearing tissues and low toxicity. Currently, FM has been approved by the National Medical Products Administration of China (CXHL2000628), and this study will guide clinical trials for patients with MPNs.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Animais , Humanos , Janus Quinase 2 , Maleatos/uso terapêutico , Camundongos , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...